What is the best

"Imaging Method for TOF Detectors"

- High Speed Signal Accumulation and Readout for an Imaging Plate -

Japam Atomic Energy Research Institute
Advanced Science Research Center

Masaki Katagiri

OUR PROPOSAL

"High speed signal accumulation and readout for a neutron imaging plate"

Why do we propose the integration method using an imaging plate?:

- 1. Independence of neutron incident rate
- Good position discrimination, wide dynamic range, good neutron sensitivity and large detection area

""However""

Very important problem for TOF method: no time-resolving ability

Reason: Integration method

How to solve the time-resolving problem

High speed signal accumulation and readout for a neutron imaging plate

High speed scanning and readout method for an imaging plate

Parallel read out

Irradiation of excitaion light with a rectangular shape

+

Usage of wavelength shifter fiber as a position detector

Multichannel light signal detections and signal processing

Modules increase with increase of a position resolution and a detection area

How to solve for parallel readout of imaging plate

Streak method

Multi-CCD camera

Compact and simple system

Real time scanning system for spallation neutron sources with a parallel readout method and a streak method

Necessary research and development for realization

- 1. Full signal readout for one scanning
 - 1) Increase of laser power
 - 2) improvement of readout method
 - 3) New PSL phosphor with about life time
- 2. Prompt luminescence by neutron
 - 1) New PSL phosphor with few prompt luminescence
 - 2) Canceling welled
- 3. **S**ensitivity for gamma-ray
 - 1) New PSL phosphor with low density
 - 2) Canceling method

Estimated performance for prototype system

1. Small-area-type system

Detection area : 20cm x 20cm

Position resolution : 0.2mm

: 1000 x 1000

Imaging point Readout time/line : 2µs Scanning speed : 50m/s Laser power : 50W Readout time for all area : 2ms

(Time resolution)

2. Large-area-type system

Detection area : 100cm x 100cm

Position resolution : 1mm

Imaging point : 1000 x 1000

Readout time/line : 10µs Scanning speed : 250m/s Laser power : 250W Readout time for all area: 10ms

(Time resolution)

Conclusion

Illustration of real time neutron imaging system using high speed readout method of neutron imaging plate

